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2018 Final Exam Q2

Setup: Suppose that the sequence of scalar random variables {Xn}∞n=1 con-
verges in distribution to a random variable X. Let {an}∞n=1 be a sequence of
constants converging to a. Show that

P(Xn ≤ an) → P(X ≤ a)

Solution:
Strategy: The trick to this problem is realizing that we’re trying to show that
a transformation of Xn converges in distribution to the same tranformation of

X. In particular, note that if a sequence of random variables {Yn}∞n=1
d−−−−→

n→∞
Y ,

then by definition P(Yn ≤ c) → P(Y ≤ c). Defining Yn = Xn − an, Y = X − a,

and c = 0 yields the solution so long as Xn − an
d−−−−→

n→∞
X − a, which is true by

Slutsky’s Lemma.

Step 1: Reframe the problem
As outlined in the strategy, it’s helpful to think of this problem as showing

convergence in distribution of a random variable. Defining Yn = Xn − an abd
Y = X − a, we can rewrite the problem as trying to show

P(Yn ≤ 0) → P(Y ≤ 0)

Step 2: Apply Slutsky’s LemmaWe now know that if we can show Yn
d−−−−→

n→∞

Y we have completed the proof. Since an → a and Xn
d−−−−→

n→∞
X, we know

Xn − an
d−−−−→

n→∞
X − a by Slutsky’s Lemma, and so Yn

d−−−−→
n→∞

Y .

2018 Final Exam Q3, parts c-e

Setup: Suppose that {Xi}∞i=1 are a sequence of iid random variables and Xi ∈
(−1, 1) with density

f(x, θ) =
1

2
(1 + θx)I(x ∈ (−1, 1))
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� c: Use Eθ[X] to propose a method of moments estimator for θ.

� d: Use Eθ[X3] to propose a method of moments estimator for θ.

� e: Consider now estimating θ by setting up a GMM problem that combines
both the moment conditions in parts c and d. Write down the sample and
population objective function for the GMM problem for a given positive-
definite 2× 2 weight matrix W . What would be the optimal choice of the
weighting matrix W that minimizes the asymptotic variance of the GMM
estimator (you do not need to compute it explicitly).

Solution:
Strategy: Parts c and d are very similar in approach: we first calculate the
relevant expectation, then solve for θ and replace the expectations with sam-
ple analogues to obtain our estimators. Mercifully, part e only involves writing
down the minimization problems, rather than actually solving them,and then
stating that the choice of W for the efficient GMM estimator is the inverse of
the variance of the moment conditions.

Part c Step 1: Find Eθ[X]
To find a method of moments estimator for θ based on Eθ[X], we first need

to calculate Eθ[X].

Eθ[X] =

∫ ∞

−∞
x
1

2
(1 + θx)I(x ∈ (−1, 1))dx

=

∫ 1

−1

x
1

2
(1 + θx)dx

=
x2

4
+
θx3

6

∣∣∣1
−1

=
3 + 2θ

12
− 3− 2θ

12
=
θ

3

Part c Step 2: Solve for θ and apply the analogy principle
Now that we know Eθ[X] = θ/3, so our moment condition is Eθ[X]−θ/3 = 0.

We now need to solve for θ, i.e. θ = 3Eθ[X]. To make this an esimator, we
apply the analogy principle and swap sample moments for population moments,
in this case replacing the expectation with the sample mean

θ̂ =
3

n

n∑
i=1

Xi

Part d Step 1: Find Eθ[X3]
Part d proceeds very similarly to part c. We first need to calculate Eθ[X3].
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Eθ[X3] =

∫ ∞

−∞
x3

1

2
(1 + θx)I(x ∈ (−1, 1))dx

=

∫ 1

−1

x3
1

2
(1 + θx)dx

=
x4

8
+
θx5

10

∣∣∣1
−1

=
5 + 4θ

40
− 5− 4θ

40
=
θ

5

Part d Step 2: Solve for θ and apply the analogy principle
Again, we solve θ = 5Eθ[X3] and apply the analogy principle, where now

the relevant relevent moment is the third uncentered moment.

θ̂ =
5

n

n∑
i=1

X3
i

Part e Step 1: Write down population minimization problem
Most of this problem just uses the definition of GMM. We first stack our

two moment conditions into a vector

m(X; θ) =

(
X − θ

3 = 0
X3 − θ

5 = 0

)
such that

Eθ[m(X; θ)] =

(
Eθ[X]− θ

3 = 0
Eθ[X3]− θ

5 = 0

)
Now we can write the population minimization problem as

θ = argminθEθ[m(X; θ)]TWEθ[m(X; θ)]

Part e Step 2: Apply the analogy principle to get the sample mini-
mization problem

To get the sample minimization problem, we simply apply the analogy prin-
ciple

θ̂GMM = argminθ

(
1

n

N∑
i=1

m(X; θ)

)T
W

(
1

n

N∑
i=1

m(X; θ)

)
Part e Step 3: State the optimal choice of W

Since we don’t need to actually calculate it, we only need to state that the
optimal choice of W is the inverse of the variance of the moment conditions.
More explicitly,

WOpt = Eθ
[
(m(X; θ)− Eθ[m(X; θ)])T (m(X; θ)− Eθ[m(X; θ)])

]−1

3



2018 Final Q4

Setup: Let {Xi}ni=1 be an i.i.d. sample from a uniform [0, θ] distribution.

� a: Show that the maximal order statistic X(n) is sufficient for θ.

� b: Derive the density function for X(n).

� c: Show that the statistic X(n) is complete. Hint: Use the definition of
completeness. You will also find Leibniz’s rule helpful

d

dz

∫ h(z)

o

q(t)dt = q(h(z))h′(z)

� d: Find the UMVUE for θ

� e: What is the MLE for θ and is its variance larger or smaller than that
of the UMVUE?

Solution:
Strategy: As we generally do to show sufficiency, we’ll try to use the Factoriza-
tion Theorem to show that X(n) is sufficient for θ in part a. Part b will leverage
the i.i.d. sample to derive the distribution of X(n), as we’ve done for other order
statistics. For part c we’ll show that if E[g(θ)X(n)] = 0 for all θ then g(θ) = 0
for all theta by first writing the expectation in the form of an integral and then
taking the derivative of both sides with respect to θ. In part d, because there
isn’t an obvious unbiased estimator we’ll take the expectation of X(n) and then
try to form an unbiased estimator based on it, which will be the UMVUE by
the Lehmann-Scheffe Theorem. Finally, we’ll find the MLE in part e by noting
that the sample likelihood is positive and decreasing in θ, but is 0 for θ < x(n),
meaning that the MLE is X(n). Using the density derived in b, we’ll find that
the variance is smaller than that of the UMVUE, which is possible because the
MLE is biased.

Part a Step 1: Write down the sample likelihood
As with almost any sufficiency problem, we’ll use the Factorization Theorem

and try to write the sample likelihood in the form h(X)g(X(n), θ). To do so, we
first need the sample likelihood.

L(X, θ) =
n∏
i=1

1

θ
I(Xi ∈ [0, θ])

=
1

nθ

n∏
i=1

I(Xi ∈ [0, θ])

=
1

nθ
I(X(n) ≤ θ)
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where the last line follows from the fact that the lower bound of the support
does not depend on θ and X(n) ≤ θ implies Xi ≤ θ for all i.

Part a Step 2: Fit into Factorization Theorem
As stated earlier, we’ll try to write the likelihood in the form h(X)g(X(n), θ).

In this case, we can simply set g(X(n), θ) = (X(n), θ) and h(mathbfX) = 1. So
X(n) is sufficient for θ.

Part b Step 1: Rewrite definition of CDF
As is typical with problems where we derive the density of an order statistic,

we’ll start by finding the CDF of X(n) by noting that P(X(n) ≤ x) = P(X1 ≤
x,X2 ≤ x, ...,Xn ≤ n) and leveraging the i.i.d. sample.

FX(n)
(x) = P(X(n) ≤ x) = P(X1 ≤ x,X2 ≤ x, ...,Xn ≤ n)

=

n∏
i=1

P(Xi ≤ x)

=

n∏
i=1

x

θ
I(x ≤ θ)

=
(x
θ

)n
I(x ≤ θ)

Part b Step 2: Take derivative
Now that we have FX(n)

(x), we simply need to take the derivative with
respect to x to get fX(n)

(x)

fX(n)
(x) = n

xn−1

θn
I(x ≤ 0)

Part c Step 1: Write the definition of a complete statistic
Since the uniform distribution isn’t part of the exponential family, we can’t

use a trick to quickly find a complete statistic. Per the hint, we’ll start by
assuming that for all values of θ and a fixed function g(.) we have E[g(θ)X(n)] = 0
and then try show that g(θ) = 0. To do this, we need to rewrite the expectation
as an integral

∀θ E[g(θ)X(n)] =

∫ ∞

0

g(θ)n
xn−1

θn
I(x ≤ 0)dx = 0

Part c Step 2: Show g(θ) = 0
Per the second part of the hint, we’ll probably want to apply Leibniz’s rule,

meaning we’ll want to take a derivative of an integral. To get this integral in
the form necessary for Leibniz’s rule, we’ll need to incorporate the indicator

function into the limits of integration: ∀θ
∫ θ
0
g(θ)nx

n−1

θn dx = 0. Taking the
derivative of both sides with respect to θ via Liebniz’s rule yields

∀θ g(θ)n
θ
= 0
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Since θ ∈ R+, we know n
θ > 0, which implies g(θ) = 0 and thus X(n) is

complete.

Part d Step 1: Find E[X(n)]
In this problem we haven’t yet found an unbiased estimator and there isn’t an

obvious candiate since E[X] ̸= θ. We do, however, have a complete and sufficient
statistic, which we know by the Lehmann-Scheffe Theorem is the UMVUE for
it’s mean. We also know that if we can make an estimator that only depends on
the data through X(n) and is unbiased for θ we will have found the UMVUE.
So a useful approach in this case is to find E[X(n)] and see if we can multiply it
by a scalar to make an unbiased estimator for θ. Using the density we derived
in part b, we can find

E[X(n)] =

∫ ∞

0

xn
xn−1

θn
I(x ≤ 0)dx

=

∫ θ

0

n
(x
θ

)n
dx

=
n

n+ 1

xn+1

θn

∣∣∣θ
0
=

n

n+ 1
θ

Part d Step 2: Find a constant to make an unbiased estimator
As stated above, if we can find a constant c to multiply X(n) by such that

cE[X(n)] = θ, we’ll have found the UMVUE. Since, E[X(n)] =
n
n+1θ, we know

n+1
n E[X(n)] = θ, and thus is the UMVUE.

Part e Step 1: Find the MLE
We now need to find the MLE and its variance. As is typical with dis-

tributions where the support depends on a parameter, we can’t do uncon-
strained maximization to find the MLE. Rather, we should note that since
L(X, θ) = 1

nθ I(X(n) ≤ θ) and θ > 0, we know the likelihood is decreasing and
strictly positive in θ, unless θ < X(n), in which case the likelihood is 0. Thus
the likelihood is maximized at X(n), making it the MLE.

Part e Step 2: Find the Variance of the MLE
We don’t actually even need to find the variance of the MLE to know that

it is less than that of the UMVUE. Since θ̂UMV UE = n+1
n θ̂MLE , we know

V ar(θ̂UMV UE) =
(
n+1
n

)2
V ar(θ̂MLE), implying V ar(θ̂UMV UE) > V ar(θ̂MLE).

To actually find the variance of the MLE, we need to find the uncentered second
moment of X(n)
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E[X2
(n)] =

∫ ∞

0

x2n
xn−1

θn
I(x ≤ 0)dx

=

∫ θ

0

n

(
xn+1

θn

)
dx

=
n

n+ 2

xn+2

θn

∣∣∣θ
0
=

n

n+ 2
θ2

So V ar(X(n)) =
n
n+2θ

2 −
(

n
n+1θ

)2
2019 Final Exam Q3, Parts b and c

Setup: Suppose we observe an i.i.d. sample {Yi, Xi}ni=1 where Yi and Xi are
both scalars and satisfy

Yi = Φ(Xiβ) + ϵi

The unobserved variable ϵi is independent of Xi and distributed N (0, 1).
Assume further that 0 < V ar(Xi) <∞.

� b: Derive the asymptotic distribution of the NLLS estimator and compare
it to the asymptotic distribution of the MLE (Note: You do not have to
verify the regularity conditions).

� c: Compute the Cramer-Rao bound for the parameter β.

Solution:
Strategy: We can actually start part b by noting that the NLLS estimator and
the MLE objective functions are the same, meaning their asymptotic distribu-
tions (and indeed their finite sample distributions) will be the same. To find
the asymptotic variance, we’ll use the formula for M-estimators. Computing the
Cramer-Rao lower bound in part c proceeds by noting that since ϵ is a normal
random variable, so it Yi and then applying the formula.

Part b Step 1: Write down the objective function and compare to
MLE

To begin, we’ll start by writing down the objective function for NLLS. Since
ϵi = Yi −Xiβ, the population minimization problem is

minβE[(Yi − Φ(Xiβ))
2]

Applying the analogy principle gives us the sample problem

β̂NLLS = argminβ
1

n

n∑
i=1

(Yi − Φ(Xiβ))
2
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We can make progress on the second part of the question by noting that
since ϵi is distributed N (0, 1), the MLE problem is

β̂MLE = argmaxβ

n∏
i=1

ϕ(Yi − Φ(Xiβ))

= argmaxβ

n∏
i=1

1√
2π

exp(−1

2
(Yi − Φ(Xiβ))

2)

= argmaxβ
1√
2π

exp(−1

2

n∑
i=1

(Yi − Φ(Xiβ))
2)

= argmaxβ − 1

2

n∑
i=1

(Yi − Φ(Xiβ))
2

= argminβ
1

n

n∑
i=1

(Yi − Φ(Xiβ))
2

So we know that the NLLS estimator and the MLE are equal, and thus have
the same distributions. Now we’re free to find the asymptotic variance of either,
since we know they will be equal. To align with the provided solution, I’ll solve
it using the M-Estimator variance formula.

Part b Step 2: Write down the M-estimation variance formula and
find its components

From Theorem 8 in Handout 6, we know that the asymptotic distribution
of an M-estimator is given by

√
n(θn − θ)

d−−−−→
n→∞

N
(
0, [E[H(W, θ)]]

−1
Σ [E[H(W, θ)]]

−1
)

We now need to translate this into our problem. If the generic M-estimator

is given by θn = argmaxbn
−1

n∑
i=1

q(Wi, b), then our q(Wi, b) is (Yi − Φ(Wib))
2.

The score, s(Wi, b) = ∂q(Wi, b)/∂b is 2(Yi−Φ(Wib))ϕ(Wib)Wi, and the Hessian
H(Wi, b) = ∂2q(Wi, b)/∂b

2 is given by 2Wi[−ϕ(Wib)
2Wi+(Yi−Φ(Wib))ϕ

′(Wib)Wi].
Finally, Σ = V ar(s(Wi, b)), which since (Yi − Φ(Wib)) is distributed N (0, 1) is
given by (2ϕ(Wib)Wi)

2. So we have

√
n(θn − θ)

d−−−−→
n→∞

N
(
0, [E[H(W, θ)]]

−1
Σ [E[H(W, θ)]]

−1
)

= N
(
0,E[2Wi[−ϕ(Wib)

2Wi + (Yi − Φ(Wib))ϕ
′(Wib)Wi]]

−2(2ϕ(Wib)Wi)
2
)

= N
(
0,E[−2W 2

i ϕ(Wib)
2]−2(2ϕ(Wib)Wi)

2
)

= N
(
0,

1

4
[Wiϕ(Wib)]

−44(ϕ(Wib)Wi)
2

)
= N

(
0, (ϕ(Wib)Wi)

−2
)
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Where the third line follows from the fact that E[Yi−Φ(Wib)] = 0. Plugging
back in Xi for Wi and β for b gives use

√
n(β̂NLLS − β)

d−−−−→
n→∞

N
(
0, (ϕ(Xβ)Xi)

−2
)

Part c Step 1: Write down the Cramer-Rao lower bound formula

The Cramer-Rao lower bound of a parameter ψ(β) is given by dψ(β)
dβ

′
I(β)−1 dψ(β)

dβ ,

where I(β) = −Eβ
[
∂2

∂β2 log p(x, β)
]
. In our case, since we’re interested in β it-

self, ψ(β) = β. The last thing we need to compute is Eβ
[
∂2

∂β2 log p(x, β)
]
. In

our case, p(x, β) = ϕ(Yi − Φ(Xiβ)). So we can calculate

∂

∂β
log p(x, β) =

∂

∂β
log ϕ(Yi − Φ(Xiβ))

= − ∂

∂θ

1

2
[(Yi − Φ(Xiβ))

2 + log(2π)]

= (Yi − Φ(Xiβ))ϕ(Xiβ)Xi

∂2

∂β2
log p(x, β) =

∂2

∂β2
(Yi − Φ(Xiβ))ϕ(Xiβ)Xi

= Xi[−ϕ(Xiβ)
2Xi + (Yi − Φ(Xiβ))ϕ

′(Xiβ)Xi]

−E[
∂2

∂β2
log p(x, β)] = −E[Xi[−ϕ(Xiβ)

2Xi + (Yi − Φ(Xiβ))ϕ
′(Xiβ)Xi]]

= (ϕ(Xiβ)Xi)
2

Again, using the fact that E[Yi − Φ(Wib)] = 0 to get the last line. Putting
everything together, we see that the Cramer-Rao lower bound is (ϕ(Xiβ)Xi)

−2

and the NLLS estimator achieves it.
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