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Final 2018: Q3

Setup: Suppose that {Xi}∞i=1 are a sequence of iid random variables and Xi ∈
(−1, 1) with density

f(x, θ) =
1

2
(1 + θx)I(x ∈ (−1, 1))

a) Show θ is identified. b) Write down the sample log-likelihood and the first
order conditions to characterize the MLE of θ.

Solution:
Strategy: Part a) proceeds like many identification problems. What we want to
show is that

θ1 ̸= θ2 ⇒ ∃x∗ s.t. f(x∗, θ1) ̸= f(x∗, θ2)

That is, if θ1 ̸= θ2, then the densities are different. Usually it’s easier to
show the (logically equivalent) contrapositive

∀x∗ f(x∗, θ1) = f(x∗, θ2) ⇒ θ1 = θ2

So we start by assuming that the densities are the same everywhere and
prove that it implies θ1 = θ2.

Part b) is also typical of MLE problems. We’ll write down the likelihood as
the product of the density at all of the realized values, take logs, and then take
the derivative with respect to θ to get the first order condition. Because it ends
up having a fairly tricky form, we’ll just stop there rather than rewrite θ̂MLE

in terms of the data.

Step 1: Identification
As mentioned in the strategy, we’re going to start by assuming we have identical
densities for two (possibly equal) values of theta

∀x∗ f(x∗, θ1) = f(x∗, θ2) ⇒ ∀x 1

2
(1+θ1x)I(x ∈ (−1, 1)) =

1

2
(1+θ2x)I(x ∈ (−1, 1))

We can subtract the right-hand side from the left to get
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∀x 1

2
I(x ∈ (−1, 1))(x(θ1 − θ2)) = 0

Now we note that for any x ∈ (−1, 1) and x ̸== 0, this expression implies

θ1 = θ2

So θ is point identified.

Step 2: Write down log-likelihood
The general form for the likelihood function for an iid sample is L({xi}ni=1, θ) =

n∏
i=1

f(xi, θ). Note that this is the density (rather than cumulative density), it

depends on the choice of θ, and we’re using realized values rather than random
variables. In this problem, the likelihood function is

L({xi}ni=1, θ) =

n∏
i=1

1

2
(1 + θxi)I(xi ∈ (−1, 1))

Generally, it’s easier to work with the log-likelihood function since it turns
the product into a sum of logs and to drop the indicator function since the
probability of observing xi /∈ (−1, 1) is 0.

log(L({xi}ni=1, θ)) = log

(
n∏

i=1

1

2
(1 + θxi)I(xi ∈ (−1, 1))

)

= n log

(
1

2

)
+

n∑
i=1

log(1 + θxi)

Step 2: Find the FOC
We now take the derivative with respect to θ and set it equal to 0 to get the

FOC

∂ log(L({xi}ni=1, θ))

∂θ
=

n∑
i=1

xi

1 + θ̂MLExi

= 0

Which completes the problem. To actually implement this estimator we’d
have to solve for θ̂MLE , either analytically or numerically.

Final 2018: Q1a (slightly altered)

Setup: Consider the density function

p(x, θ, ν) =
θνθ

xθ+1
I(x ≥ ν)
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does p(., ., .) belong to the exponential family? What if we omit the indica-
tor?

Solution:
Strategy: The answer to the first question is ”No, because the support depends
on a parameter.” When that is not the case, the solution strategy is to try to
rewrite the density in terms of the exponential family. You will generally either
succeed or find it’s impossible, which will lead to the answer.

Step 1: Write out the form for the exponential family and assign
parts
Recall that the exponential family is characterized by a density of the form

f(x|θ, ν) = h(x)c(θ, ν) exp

(
k∑

i=1

wi(θ, ν)ti(x)

)
We can see that c(θ, ν) = θνθ. We can’t, however, write h(x) = x−(θ+1)

since that depends on θ. Instead, we’ll have to see if we can write it in the
exponential part.

Note that x−(θ+1) = exp(log(x−(θ+1))). So we can write w1(θ, ν) = −(θ+1)
and t1(x) = log(x). Finally, we’ll just assign h(x) = 1. So we have

p(x, θ, ν) = 1 ∗ θνθ exp(−(θ + 1)log(x))

so p(., ., .) belongs to the exponential family.
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